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The effect of extreme gas conditions (anoxia and air) on the protein expression profiles of

Conference pear slices was assessed with a differential gel electrophoresis (DIGE) approach using

robust statistical analysis. Changes in expression, up to 4-fold, were identified in proteins involved in

respiration, protein synthesis, and defense mechanisms. In addition, short-term exposure of pear

slices to anoxia clearly induced up-regulation of transketolase and polygalacturonase inhibiting

protein and down-regulation of several isoforms of the major allergen Pyrc (PR proteins), providing

further evidence of the possible involvement of these enzymes in the development of the

physiological disorder core breakdown. The role of these PR proteins under anoxia is unknown,

but our results suggest that these proteins are involved in protection against abiotic stress such as

the anoxic conditions applied.
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INTRODUCTION

Horticultural crops are constantly exposed to abiotic stresses.
During harvesting and handling, a series of mechanical stresses
are imposed on the plant cells that induce different cellular
responses such as increased respiration rate, ethylene production,
higher susceptibility to pathogen attack, and wound responses.
These all lead to a reduction of the quality and storability of the
crops (1, 2). Further, horticultural crops are highly perishable
after harvest and require special techniques to avoid rapid
deterioration. Controlled atmosphere (CA) storage is commonly
applied to horticultural crops such as apple and pear to extend
their shelf lives. It involves temperature reduction and modifica-
tion of the air composition (oxygen reduction and carbon dioxide
increase) in order to retard respiration, ethylene production, and
senescence (3). However, these CA conditions may impose addi-
tional abiotic stresseswhen the oxygen and carbon dioxide partial
pressures are too low or too high, respectively. Different physio-
logical disorders associated with improper CAmanagement have
been reported such as chilling injury, failure to ripen, develop-
ment of off flavors, (4, 5) and browning disorders (6). These
disorders are generally poorly understood from a physiological
point of view. To improve our understanding, there is need for

more holistic approaches such as the use of high throughput
techniques like proteomics or metabolomics (7-10).

Pome fruits, apple, and pear are native to most of Europe,
the Near East, and Asia. In terms of world production, they are
considered among the major four fruit classes and the second
major fruit inmoderate climates (11). Specifically, the pear variety
“Conference” is highly susceptible to internal browning and to
subsequently develop core breakdown during CA storage (6).
Core breakdown has been shown to be related to the gas
composition in the storage atmosphere (12); thus, much attention
has been paid to the mechanisms of gas transport in the fruit
(13-16) and the microstructure of the intercellular space as the
main transport path for metabolic gases (17). A previous pro-
teomics study on core breakdown in “Conference” pears char-
acterized the most relevant proteins involved in this disorder (7).
Internal browning and core breakdown in Conference pears
are believed to be the result of an imbalance between oxidative
and reductive processes due to the formation of gas gradients
in the fruit inducing accumulation of reactive oxygen species
leading to membrane damage finally resulting in the enzymatic
oxidation of polyphenols to brown colored compounds (6).
Although it is generally accepted that suboptimal or extreme
CA conditions trigger core breakdown (6), proteomics studies
focusing on extreme gas concentrations which are believed to
play a major role in the appearance of the disorder have not
been carried out yet.

In an attempt to understand the effect of the CA composition
on the metabolism of “Conference” pear, regardless of time and
actual browning development, the current study focuses on
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protein expression changes in thin pear slices submitted to
extreme gas compositions using two-dimensional differential gel
electrophoresis (2-DE DIGE) combined with a rigorous statis-
tical analysis of the data preceding LC-ESI-MS/MS identifica-
tion of the relevant proteins. With the introduction of more
sensitive MS equipment, spot overlap becomes evident in 2-DE
protein separation (18, 19). Within a spot with several protein
identifications, the one involved in the regulation could be
incorrectly assigned. More frequently the information is dis-
carded, as it is unclear which protein species has the highlighted
fold change or even whether the fold change is a composite for
different proteins each with differing relative expression levels.
Different approaches to counteract the problem involve the use of
narrow range immobilized pH gradient (IPG) strips, sample
fractionation methods, different sample preparation conditions,
and modification of conditions during 2-DE (19). We propose
that the use of spectral counts can help to identify which protein
species within a spot is the most abundant protein accounting for
the changes observed. Spectral counting consists of counting the
total number of spectra representing identified peptides for a
certain protein (20, 21) and has been shown to correlate closely
with protein concentration (20).

The results from this study not only picture the short-term
effect of gas composition on the metabolism of CA stored pears
but also highlight the need to carry out an extensive and complete
analysis of the data to draw sound conclusions. Knowledge of
how horticultural crops respond to environmental changes and
industrial manipulation is of key importance for quality assur-
ance and process optimization in the food industry (1). The same
approach could potentially be applied to other commodities in
order to comeupwith solutions to the different problems faced by
the postharvest industry to reduce economic losses.

MATERIALS AND METHODS

Plant Material. Pears (Pyrus communis cv. Conference) were har-
vested in the orchard of the Centre for Fruit Culture in Rillaar (Belgium).
All pears were stored under optimal controlled atmosphere (CA) condi-
tions. Pears were picked at the commercial harvest date on September 16,
2006, as determined by the Flanders Centre of Postharvest Technology
(Belgium). The fruit was submitted to precooling in air at -1 �C for 3
weeks before applying optimal controlled atmosphere conditions of 2.5%
O2 and 0.7% CO2 at -1 �C following commercial protocols. Pears were
stored for 8 months under these commercial storage conditions, as pears
stored for longer periods are more likely to develop core breakdown
disorder.

Sample Preparation. Pears taken from the commercial storage
conditions were cut perpendicularly to the stem-calyx axis at 5 cm

from the calyx. Samples were taken rapidly in a cooling room at 1 �C to

prevent oxidation. Thin slices of tissue samples (1.5 mm thick and 2.5 cm

diameter) were taken from the equatorial region excluding the skin
and core. For each condition, 1.5 L respiration jars were filled with

150 g of pear tissue slices distributed over six metal grids each carying

one layer of tissue slices equally spaced andwithout overlap. The 1.5 L jars

were connected in series. CA conditions of 20% O2 and 80% N2 (air)
and 10% CO2 and 90% N2 (anoxia) were generated to flush the jars at

10 L/h. Before entering the jars, the CA mixtures were humidified. Gas

composition was monitored using a PBI Dansensor, model Chekmate

no. O2 (Zr) CO2-100% (Denmark). The control consisted of pear slices

from pears coming directly from the commercial storage, and they
were immediately frozen in liquid nitrogen until further analysis. Jars

were incubated at 1 �C for 5 days. In all cases four independent biological

replicates composed of slices from 10 sampled pears were obtained for

each condition (control, air, and anoxia).

Protein Extraction and CyDye Labeling. Proteins were extracted
using a phenol extraction followed byprecipitation in 100mMammonium
acetate in methanol as detailed in ref 7. The obtained protein pellets were
stored at -80 �C until analysis. Total protein concentrations were

determined using the Bio-Rad DC protein assay following the manufac-
turer’s guidelines (Bio-Rad, UK).

The protein pellets were rehydrated in DIGE buffer (7 M urea, 2 M

thiourea, 4% CHAPS, 5 mM magnesium acetate, 10 mM Tris, pH 8.0).

The pHwas adjusted to 8.5 using a 50 mMNaOH solution. Proteins were

labeled using the fluorescent cyanine dyes developed for DIGE (GE

Healthcare) following the manufacturer’s guidelines. Thus, an amount

of 50 μg of proteins was labeled with 400 pmol of amine reactive cyanine

dyes dissolved in fresh anhydrous dimethylformamide. The two-dye

approach recommended by Karp et al. (22) was used. Four biological

replicates per treatment (control, air, or anoxia) were independently

labeledwithCye 3. Cye 5was used to label the internal standard composed

of equal amounts of all samples. The labeling reactionwas incubated in the

dark for 30 min and quenched with 10 nmol of lysine. An equal volume of

2� sample buffer (7M urea, 2M thiourea, 4%CHAPS, 20 mg/mLDTT,

and 2% Pharmalites 3-10) was added to each of the labeled samples.

Rehydration buffer (7M urea, 2M thiourea, 4%CHAPS, 10mg/mL, and

1%Pharmalites 3-10)was added tomakeup a final volume of 450μLprior

to IEF. The Pharmalites 3-10 was obtained from Bio-Rad. Both the

internal standard labeled with Cye 5 and the sample labeled with Cye

3 were mixed and run together in the same gel.

Two-Dimensional Gel Electrophoresis. Linear IPG strips (24 cm
long) of pH 4-7 (GE Healthcare) were rehydrated with the CyeDye
labeled samples for 10 h at 20 �C at 20 V using the IPGphor II apparatus
(GEHealthcare). The steps of the IEF included 1 h at 500 V, 1 h at 1000 V
followed by 8.2 h at 8000V. The last step consisted of 24000V h at 8000V.
After IEF completion, strips were equilibrated individually for 15 min in
10 mL of equilibration buffer (8M urea, 30% glycerol, 1% SDS, 100 mM
Tris-HCl, pH 6.8) containing 2%w/vDTT and subsequently for 15min in
10 mL of equilibration buffer containing 2.5% iodoacetamide. Second
dimension separation was performed in an Ettan DALT Twelve system
(GE Healthcare) with lab cast 1.0 mm SDS polyacrylamide gels (12.5%).
Gels were run overnight at 1.5 W/gel.

Protein Visualization and Image Analysis. Labeled proteins were
visualized in a Typhoon 9410 imager (GEHealthcare). Cye 3 images were
scanned using a 532 nm laser and 580 nm band-pass (BP) emission filter.
Cye 5 images were scanned using a 633 nm laser and a 670 nm BP30
emission filter. Gels were scanned at a 100 μm resolution. The photo-
multiplier tube (PMT) was set to ensure maximum pixel intensity between
40000 and 60000 pixels. Gel analysis was performed using Progenesis
SameSpots (Nonlinear Dynamics, U.K.), a 2-DE analysis software
package.

Data Analysis. A complete statistical analysis was carried out using
both univariate and multivariate statistics on the log standardized abun-
dance where the log standardized abundance is the Cye 3 sample spot
volume divided by the Cye 5 standard sample spot volume after ratio-
metric normalization. By use of both approaches independently, not only
absolute changes in terms of protein expression but also correlations and
concerted changes in expression can be assessed.

Univariate Statistics. One-way analysis of variance (ANOVA)was
carried out at p<0.01 and p<0.05 in order to assess for absolute protein
changes among the different treatments. The false discovery rate (FDR)
was assessed by calculating q-values using the p-values (23); consequently,
both a p-value and a q-value are calculated for each spot. The q-value is a
measure of significance in terms of FDR. Since the q-value approach relies
on the use of the correct statistical test (one-way ANOVA) for the
experimental design (22), the two-dye DIGE schema was used as outlined
in the protein extraction and CyDye labeling section. By calculating the
q-values, the user has control over the FDR because differing p-value
thresholds can be chosen for differing levels of false call rates. The FDR
estimates how many, from the spots declared to be significant by the one-
way ANOVA test, are expected to be not significant at all. Differentially
expressed proteins were manually checked as being proper spots before
submitting them for protein identification. Pairwise comparisons were
carried out by using a Tukey test (p<0.05) in SPSS, version 15 (Chicago,
IL) only on those proteins declared to be significant by one-way ANOVA.

Multivariate Statistics. Data preprocessing steps included mean
centering and standardizing the variance. Principal component analysis
(PCA), an unsupervised technique, was carried out as a first exploration of
the data and to identify possible outlying gels through the 95%Hotelling’s
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T2 limit (24). Partial least-squares discriminant analysis (PLS-DA) analy-
sis, a supervised technique, was carried out to sharpen the discrimination
among the treatments according to similar protein expression profiles
as detailed in ref 8. The variable importance plot (VIP) was used as
formal tool based on the correlation loadings to identify the most relevant
proteins involved in class distinction. Further details can be found in
refs 7 and 8. The VIP procedure was first run to select the 120 most
important proteins. Selected proteins were manually checked as being
real spots. Real spots were confirmed, and the VIP procedure was run
again with these proteins. Only proteins successfully identified by
LC-ESI-MS/MS that were independently selected from the univariate
(p<0.05 and q<0.1) and multivariate statistical analysis were used to
build the final PLS-DA model. Because of the small number of observa-
tions, cross-validation was applied to test the performance of the
models. PCA and PLS-DA analyses were performed using Unscrambler
9.6 (CAMO A/S, Trondheim, Norway).

Protein Identification. Mass spectrometry experiments were per-
formed using an LTQ linear ion trap instrument fitted with a nanospray
ion source (ThermoFisher, Waltham, MA) as detailed in ref 25. Since the
number of Pyrus communis sequences in the public databases is very
limited, MS/MS data analysis and cross species ID were applied for
protein identification. Data were submitted to the Mascot search algo-
rithm (Matrix Science, London, U.K.) and searched against the GenBank
nonredundant Viridiplantae-specific protein sequence database, using a
fixed modification of carbamidomethyl and a variable modification of
oxidation (M). In a second identification round, a Mascot search was
performed against the Malus � domestica EST sequences from Unigene
database of December 8, 2007. Proteins assigned on the basis of two or
more peptides were considered as confidently identified. When more than
one protein was assigned within a spot, spectral counting was used as a
rough estimate of protein abundance (20).

RESULTS

Even though extreme gas conditions were applied, the effect of
the different treatments did not trigger large visual changes in

protein expression (Figure 1). Quantitatively it was found that the
observed fold changes in protein expression levels were limited to
a maximum of 4.

Selected Spots through Univariate Statistics. The one-way
ANOVA revealed 105 significant spots at a p< 0.01 value from
which 56 were confirmed as real spots and suitable for identifica-
tion. By application of the false discovery rate approach with a
q-value threshold of 0.05, 6 out of the 56 were estimated to be
false positives.

Selected Spots through Multivariate Statistics. The PCAmodel
generated with all variables included revealed already a good
discrimination among the different treatments (PC1 and PC2

were able to explain 22% and 14% of the total variance)

(Supporting Information). No outlying gels were found. A

PLS-DA model as a supervised technique sharpened the discri-

mination among the treatments, and further analysis focuses on

thismultivariate technique.ThePLS-DAmodelwith all spot data

revealed good discrimination among the different gas conditions,

being able to explain 93% of the observed variation between the

treatments based on the first two latent variables (Supporting

Information). In order to narrow the number of proteins selected

for further work, a new PLS-DA model was built based only on

the 120most important spots selected through theVIPprocedure.

This reduced model was still able to explain 86% of the variation

between the treatments with the first two latent variables (Sup-

porting Information).
Bringing Both Statistical Approaches Together. From the 105

spots selected through one-way ANOVA ( p<0.01), 75 were also
selected throughPLS-DAandVIP 120 procedure.Of the 120 spots
chosen by the VIP procedure 112 spots had a p<0.05 value.
Univariate and multivariate approaches are different, thus, the
explanation for the slightly different selection of spots for both

Figure 1. 2-DE DIGEmaps for the different applied treatments: (A) control (2.5% O2, 0.7% CO2); (B) high oxygen or air (20%O2); (C) high carbon dioxide or
anoxia (10% CO2). Four independent biological replicate gels are displayed per treatment.
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approaches. PLS-DA accounts for correlations while ANOVA
not. Thus, highly correlated proteins even though not with high
fold changes will get a high loading and thus not found to be
differentially expressed by ANOVA. Spots that were identified as
significant by either the univariate or the multivariate method
were sent for MS identification after confirming they were real
spots. Only 63 spots have been analyzed because of technical
problems. Thus, 63 spots were submitted for identification, out of
which 43 spots were selected by both approaches and a new PLS-
DA model based on these proteins was built (Figure 2A). The
remaining spots were excluded from the analysis. Focusing the
multivariate technique on the spots that provide the discrimina-
tion allows a clear visualization as to which proteins species
contribute to the separation in the multivariate space. The
explained variance between the treatments was 93%, accounting

for the two first latent variables when the 63 spots were included.
The remaining variation was still very well explained by the
remaining real 43 proteins obtaining a good discrimination
between the treatments (Figure 2B).

LC-ESI-MS/MS Identification of Selected Spots and Correla-

tion Patterns. The statistically relevant spots selected through
univariate andmultivariate tools were analyzed byLC-ESI-MS/
MS. Fifty-three out of 63 spots (84%) yielded a confident match
with pear or protein sequences from GenBank. The additional
Mascot search against the apple EST database confirmedmost of
these identifications and increased the identification rate to 94%
(59 out of 63proteins). The use ofMalusESTs is a valuable source
data for the investigation of the poorly documented pear pro-
teome. The complete list of investigated spots and confidently
identified peptides togetherwith their statistical scores is provided
in Supporting Information (Table 1). The presence of multiple
proteins within a spot was clearly evident from the identifications
(Figure 3). Thus, spectral counts were used as a rough estimate of
protein abundance. Within a spot with multiple protein identifi-
cations, if the total number of spectral counts was significantly
higher for a certain identification (>70%), it was considered as a
singlet (Supporting Information table). The PLS-DAmodel built
with singlets is shown in Figure 2B.

Identified proteins belong to different categories with different
biological functions such as central metabolism, defense mechan-
isms, and protein synthesis. Their roles and the interconnection
among pathways are further elaborated in the Discussion.

DISCUSSION

Statistical Analysis. The high level of overlap of species
identified as significant between the univariate and multivariate
technique demonstrates the robustness of the technique and gives
confidence that highly significant changes are being identified.
There was a 60% overlap between the proteins selected through
one-way ANOVA ( p<0.01) and PLS-VIP 120 and 95% at a
p-value of 0.05 for the one-way ANOVA selection. The unsuper-
vised PCA technique revealed a good discrimination among the
different treatments, validating that themodel was correct.Use of
the supervised PLS-DA technique sharpened the discrimination
among the treatments. The biplots (Figure 2A and Figure 2B)
show the marked discrimination among the treatments, as
evidenced by the tight clusters formed among the three treat-
ments and their separation along LV1 and LV2, respectively.
The latent variable 1 (LV1) of the PLS-DA model is able to
explain the variation between the control and oxygen, while
the latent variable 2 (LV2) explains the variation between the
control and anoxia. On the basis of the marked discrimi-
nation of the treatments, it can be clearly observed that certain
proteins are clearly characteristic or highly correlated to a specific
treatment.

Spot Overlap Deserves Special Attention.With the introduction
of more sensitive MS equipment, spot overlap has become more
evident in 2-DEprotein separation (26,27). This issue represents a
serious problem in terms of relative quantification for further
biological interpretation of the data. The presence of several
proteins within a spot arises, as in practice more than one protein
can migrate to the same location on a 2-DE gel because of the
large dynamic range of proteins within a cell. Additionally,
unresolved proteins might be accompanied by contaminants.
Different approaches to counteract the problem involve the use
of narrow range IPG strips, sample fractionation methods,
different sample preparation conditions, and modification of
conditions during 2-DE (19). As pear proteome is poorly char-
acterized, the use of gel-free approaches is not a feasible alternative,

Figure 2. PLS-DA biplot built with the (A) 63 proteins selected through
univariate and multivariate statistics and sent for LC-ESI-MS/MS identi-
fication and (B) 43 identified proteins considered as singlets. Sample
scores and loadings (proteins) are superimposed. The percentage ex-
plained variances are indicated on the axes. The analysis was based on the
correlation matrix. Open small circles represent the different proteins.
Squares represent control (2.5% O2, 0.7% CO2) conditions, circles
represent high oxygen or air (20% O2) conditions, and triangles represent
high carbon dioxide or anoxic (10% CO2) conditions.



Article J. Agric. Food Chem., Vol. 57, No. 15, 2009 7001

since cross-species identification is the sole option for a poorly
characterized genome. However, even when spot overlap exists,
meaningful data can still be extracted. In this study, we used
spectral counts to assign major proteins to spots with mixed
spectra. Spectral counting involves counting the total number of

spectra representing identified peptides for a certain pro-
tein (20, 21). Almost 80% of the analyzed 63 proteins contained
multiple proteins. By application of spectral counts as a rough
estimate of protein abundance, 43 of the 59 successfully identified
proteins were identified as singlets (Figure 3 and Supporting

Table 1. Summary of the Proteins Considered as Singlets and Chosen through One-Way ANOVA, PLS-DA, and VIP Procedurea

log of standarized abundance (SA) ( standard error (SE)

protein name spot ID protein ID p-value q-value power control air high CO2

1. Metabolism

ATP synthase subunit d, mitochondrial 225 Mdo. 7184 0.019 0.07 0.77 0.030a ( 0.008 -0.017b ( 0.013 0.018a,b ( 0.007

pyruvate dehydrogenase E1 β subunit 161 Mdo. 3217 0.011 0.06 0.85 0.027a ( 0.022 -0.048b ( 0.006 -0.030b ( 0.008

ADP glucose synthase (*) 88 Mdo. 1894 0.005 0.038 0.93 -0.065a ( 0.021 0.048b ( 0.021 -0.000a,b ( 0.009

acetyl CoA acetyl transferase (*) 27 Mdo. 9294 0.001 0.018 0.99 -0.089a ( 0.033 0.118b ( 0.027 -0.032a ( 0.0222

phosphoglycerate dehydrogenase like 81 Mdo. 10865 0.000 0.002 1.00 -0.093a ( 0.010 0.012b ( 0.009 0.0267b ( 0.013

aconitase 226 Mdo. 12067 0.004 0.033 0.95 -0.022a ( 0.006 0.021b ( 0.008 0.015b ( 0.006

transketolase (*) 125 3559814 0.000 0.006 1.00 0.074a ( 0.011 -0.020b ( 0.005 0.024c ( 0.011

NADP-dependent malic enzyme (*) 233 Mdo. 12341 0.040 0.104 0.63 -0.048a ( 0.009 -0.020a,b ( 0.005 -0.014b ( 0.009

NADP-dependent malic enzyme 710 Mdo. 11996 0.092 0.149 0.46 -0.066a ( 0.025 -0.018a ( 0.008 -0.016a ( 0.006

enolase (*) 24 Mdo. 11920 0.000 0.004 1.00 -0.072a ( 0.029 0.161b ( 0.016 -0.059a ( 0.023

phosphoglycerate kinase 168 Mdo. 2160 0.003 0.030 0.96 -0.053a ( 0.015 -0.011b ( 0.009 0.019b ( 0.005

phosphoglycerate kinase 195 Mdo. 2160 0.009 0.052 0.88 -0.048a ( 0.011 -0.014a,b ( 0.007 0.013b ( 0.013

malate dehydrogenase (*) 46 Mdo. 15920 0.001 0.018 0.99 0.048a ( 0.016 -0.1270b ( 0.036 0.039a ( 0.018

enolase (*) 33 Mdo. 11920 0.011 0.058 0.85 -0.131a ( 0.042 0.065b ( 0.025 -0.022a ( 0.035

2. Protein Folding and Stabilization

heat shock protein HSP 70 54 Mdo. 1243 0.043 0.104 0.62 0.066a ( 0.051 -0.037a,b ( 0.030 -0.082b ( 0.015

heat shock protein HSP 70 478 Mdo. 1243 0.082 0.134 0.49 -0.066a ( 0.036 0.018a ( 0.018 -0.003a ( 0.009

heat shock protein HSP 90 171 Mdo. 423 0.011 0.059 0.84 0.059a ( 0.013 -0.011b ( 0.011 0.011a,b ( 0.014

ATP binding/GRP 94 homologue 209 Mdo. 423 0.041 0.104 0.63 0.048a ( 0.016 0.014a,b ( 0.013 -0.006b ( 0.006

3. Protein Synthesis

translation initiation factor eIF-5A-2 (*) 16 77555893 0.000 0.000 1.00 -0.035a ( 0.012 -0.118b ( 0.016 0.166c ( 0.018

nuclei acid binding protein 78 Mdo. 6093 0.005 0.037 0.93 0.101a ( 0.019 -0.024b ( 0.027 0.024a,b ( 0.008

translation elongation factor G 193 Mdo. 6297 0.008 0.048 0.89 0.054a ( 0.015 -0.009b ( 0.012 -0.007b ( 0.009

CDC 48 like protein 597 Mdo. 253 0.105 0.149 0.43 -0.025a ( 0.030 0.039a ( 0.017 0.028a ( 0.005

translation initiation factor eIF-4A (*) 14 Mdo. 5235 0.000 0.008 0.99 0.112a ( 0.020 -0.190b ( 0.052 0.036a ( 0.006

Translation initiation factor eIF-4A (*) 146 Mdo. 5235 0.000 0.002 1.00 -0.050a ( 0.004 0.033b ( 0.007 -0.045a ( 0.010

translation initiation factor eIF-4A (*) 73 Mdo. 5235 0.000 0.002 1.00 -0.078a ( 0.013 0.049b ( 0.012 -0.031c ( 0.003

4. Transport

vacuolar ATPase subunit A 235 60592630 0.003 0.030 0.96 0.020a ( 0.005 -0.010b ( 0.005 -0.006b ( 0.004

5. Cellular Communication

14-3-3 like protein (*) 205 Mdo. 5581 0.003 0.033 0.95 -0.032a ( 0.007 -0.046a ( 0.013 0.010b ( 0.005

6. Stress Related Proteins

major allergen Mal d (*) 1 Mdo. 13717 0.000 0.001 1.00 -0.198a ( 0.053 0.330b ( 0.016 -0.202a ( 0.050

major allergen Mal d 1.03 (*) 4 Mdo. 13717 0.000 0.002 1.00 -0.204a ( 0.035 0.224b ( 0.023 -0.040c ( 0.047

major allergen Pyrc 1 (*) 183 3044216 0.007 0.047 0.90 -0.001a ( 0.009 0.064b ( 0.013 -0.002a ( 0.015

ACC oxidase (*) 47 4586409 0.000 0.013 0.99 0.030a ( 0.021 -0.126b ( 0.024 0.044a ( 0.020

polygalacturonase inhibiting protein (*) 165 33087506 0.000 0.013 0.99 -0.026a ( 0.014 -0.044a ( 0.006 0.030b ( 0.001

isoflavone reductase related protein 7 3243234 0.000 0.004 1.00 0.316a ( 0.034 -0.039b ( 0.039 0.021b ( 0.033

superoxide dismutase 141 Mdo. 1321 0.024 0.080 0.73 0.105a ( 0.027 0.022b ( 0.008 0.030a,b ( 0.018

7. Other Proteins

endomembrane associated protein 3 Mdo. 7202 0.008 0.050 0.88 0.216a ( 0.089 -0.233b ( 0.104 -0.174b ( 0.047

hydrolase, hydrolyzying O-glycosyl (*) 34 Mdo. 16650 0.000 0.002 1.00 0.102a ( 0.008 -0.091b ( 0.030 0.019c ( 0.008

hydrolase, hydrolyzing O-glycosyl (*) 111 Mdo. 16650 0.002 0.026 0.97 0.004a ( 0.017 -0.007b ( 0.016 0.033a ( 0.009

hydrolase, hydrolyzing O-glycosyl 10 Mdo. 11995 0.000 0.006 1.00 -0.143a ( 0.022 0.175b ( 0.040 0.118b ( 0.034

progesterone 5-β reductase (*) 197 Mdo. 6425 0.005 0.038 0.93 -0.019a ( 0.009 0.042b ( 0.012 0.002a ( 0.007

Clp C protease 67 Mdo. 1094 0.001 0.017 0.99 0.098a ( 0.007 -0.038b ( 0.022 -0.000b ( 0.019

p-hydroxyphenyl pyruvate dioxygenase (*) 114 Mdo. 3417 0.003 0.028 0.97 -0.040a ( 0.013 0.058b ( 0.021 -0.016a ( 0.002

rubisco large subunit (*) 97 4098550 0.004 0.033 0.95 0.003a ( 0.009 -0.102b ( 0.021 0.004a ( 0.022

a The complete table can be accessed in Supporting Information. From the 63 proteins selected from independent univariate and multivariate statistical analysis, those proteins
that were significantly different from the control and between the treatments by a pairwise comparison Tukey test (p < 0.05) are displayed with an asterisk. Different superscript
letters account for statistical differences (p < 0.05).
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Information table). To be considered as singlet, the top hit ranked
protein represented at least 70% of the total spectral counts.

Spectral counts correlate well with protein concentration, in
contrast to peptide counts that correlate poorly (20). However,
there are certain shortcomings thatmust bementioned such as the
fact that the approximation of abundance from the repeat peptide
observations per protein totally ignores the size of the protein;
large proteins contribute with more peptides than small ones,
resulting in an overestimation if the data are not normal-
ized (26,27). The data should also be normalized for the expected
number of tryptic peptides (28). Additionally, depending on the
instrumental setup for data acquisition, some peptides will be
detectedmore easily than others and others will never be detected
even if they are abundant in the sample (21,29). The most typical
setup consists of prior separation of the peptides in an ion
exchange and/or reverse phase chromatography. By reduction
of the complexity of the peptide mixture, the instrument is not
overwhelmed by themost abundant species, making it possible to
measure the less abundant ones. In a data-dependentmode, there
are peptides that are difficult to detect either because they are
difficult to ionize or fragment or because they coelute with
abundant peptides. Thus, these peptides are rarely selected by
the instrument. These peptides are poor abundance reporters
because the number of times they are detected remains almost
constant or only changes for strong concentration changes (29).

Recently, Yang et al. (30) has successfully applied an exponen-
tially modified protein abundance index (emPAI) to determine
the abundance of the individual proteins comprised within a spot
containing multiple proteins. Although spectral counts correlate
very well to protein abundance, they might not necessarily
correlate very well to spot volume (e.g., minor protein compo-
nents in terms of abundancemight bemore effectively labeled and
thus account for most of the fluorescent signal).

Biological Interpretation. From the 43 identified singlets by
spectral counts, a subselection of proteins for biological inter-
pretation (Table 1) has been based on Tukey pairwise compar-
isons ( p<0.05) following two main criteria: at least one of the
treatments should differ from the control, and there should be
statistical differences between the treatments. The selected pro-
teins have been classified on the basis of their function and
discussed accordingly. All comparisons are referenced to control
conditions.

CentralMetabolism.Only subtle changes were observed at the
glycolytic and Krebs cycle pathways. The main changes observed

correspond to the slight up-regulation ofmalic enzyme (spot 233).
This can be seen as a way to circumvent the dependence on
glycolysis to generate ATP by instead using the reserves of malic
acid already present in the tissue. Similar results were obtained
with whole pears exposed to browning inducing conditions (7).
This reaction of the malic enzyme is also important in producing
reducing equivalents such as NADPH, needed by defense related
pathways such as the glutathione-ascorbate pathway.

In addition, an up-regulation of transketolase was observed
(spot 125). This finding provides further evidence to a previous
metabolomics study in which there was pentose phosphate path-
way activation under anoxic conditions (10). The oxidative part
of the pentose phosphate pathway is a major source of NADPH
which is used for the synthesis of fatty acids and is important for
the maintenance of the redox potential to protect against oxida-
tive stress (31).

Previous work with whole pears stored under browning indu-
cing conditions (7, 9) revealed that respiration pathways were at
least partially involved in the appearance of core breakdown
disorder inConference pears. These results provide extra evidence
of the direct response of respiration involved enzymes to short-
term exposures to changed gas conditions before core breakdown
is evident.

In summary, central metabolism pathways seem to be altered
in the short term exposure of pear slices to the tested gas
conditions. Although this discussion focuses on a limited number
of selected proteins, these proteins are the ones from the full
proteome that were shown to be significantly affected. Of course,
subtle changes that did not get beyond the noise level might be
missing.

Defense Related Proteins. Non-significant changes were ob-
served in the ascorbate-glutathione cycle, while changes in the
regulation of several PR proteins (known as allergens) and PGIP
were significant. Thus, we suspect that browning really starts as
soon as the ascorbate-glutathione cycle collapses (7). The most
pronounced changes in expression of proteins due to air or anoxic
conditions were found with a series of PR isoforms. They were
consistently up-regulated in air conditions during the 5-day
exposure of pear slices (Table 1) and highly correlated to most
of the respiration involved enzymes (Figure 4). Previous studies
conducted by our group on whole pears stored for long periods
(6-8 months) under controlled atmosphere storage showed the
same behavior (7, 9). A complete down-regulation of these
allergenic proteins was observed in browning inducing conditions
of pear. Both in the current study on pear slices and in previous
studies on whole pears allergens were down-regulated as the
oxygen concentration dropped (7). In brown pear tissue (sub-
optimally stored under limiting levels of oxygen or high levels of
carbon dioxide) the action of the enzyme PPO probably con-
tributed to the total down-regulation of these allergenic proteins
compared to the sound tissue (tissue that did not yet develop
browning in pears showing the browning disorder). Thus, we
suspect that total down-regulation of these allergenic proteins
during CA storage of pears is to a certain extent correlated to the
appearance of core breakdown. The possible role of these
allergenic proteins during CA storage deserves further attention.
Elucidation of their sequence, behavior, and abundance change
of the different isoforms under different storage conditions
should be performed in future studies using suitable MS ap-
proaches such as multiple reaction monitoring (MRM).

Polygalacturonase inhibiting protein (spot 165) was up-regu-
lated under anoxic conditions. These results are in agreementwith
what we previously found with the long-term exposure of whole
pears to different gas concentrations (7). It is possible that PGIP
would have a dual role as PR proteins, conferring protection

Figure 3. Representation of the number of singlets, doublets, triplets,
quadruplets, and quintuplets found after LC-ESI-MS/MS identification
and applying spectral counts as a rough indication of protein abundance.
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against pathogen attack and also during abiotic stress exposure
(e.g., cold, anoxia).

Protein Synthesis. Protein synthesis is an ATP dependent
process. Thus, it can be expected that under anoxic conditions,
protein synthesis is down-regulated except for some specific
anaerobic proteins. In this study, only two proteins involved in
the synthesis of proteins (eukaryotic translation initiation factor
eIF-4A, spots 146 and 73)were up-regulatedunder air conditions.
Only, eIF-5A-2 (spot 16) was evidently up-regulated under
anoxia (Table 1). Recently, it has been shown that eIF-5A-2
regulates programmed cell death caused by infection (32).

Conclusion. The current 2-DE DIGE approach studying ex-
treme CA conditions on pear slices confirmed previous studies on
whole pears in terms of regulation of proteins involved in
respiration, protein synthesis, and defense mechanisms. In addi-
tion, anoxic conditions on pear slices revealed up-regulation of a
pentose phosphate pathway enzyme as an alternative route for
production of reducing equivalents for further defense mechan-
isms while skipping ATP consuming steps. The role of PR or
allergenic proteins, as well as the polygalacturonase inhibiting
protein, deserves further attention. They responded clearly to the
extreme gas concentrations applied and were previously found to

be relevant in the appearance of the physiological core break-
down disorder after long-term exposure of pears to suboptimal
storage conditions.

ABBREVIATIONS

ANOVA, analysis of variance; CA, controlled atmosphere;
CHAPS, 3-(3-cholamidopropyl)dimethylammonio-1propane
sulfonate;DIGE, differential in gel electrophoresis;MRM,multi-
ple reaction monitoring; DTT, dithiothreitol; IEF, isoelectric
focusing; IPG, immobilized pH gradient; LV, latent variable;
PC, principal component; PCA, principal component analysis;
PGIP, polygalacturonase inhibiting protein; PLS-DA; partial
least-squares discriminant analysis; PMT, photomultiplier tube;
VIP, variable importance plot.
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Figure 4. Correlation map for the 43 proteins identified as singlets by means of LC-ESI-MS/MS. Numbers represent the spot number of the proteins of
Table 1. The color scale on the left goes from black “1”, indicative of positive correlation, to blue “-1”, indicative of negative correlation.



7004 J. Agric. Food Chem., Vol. 57, No. 15, 2009 Pedreschi et al.

and a Microsoft PowerPoint file contains the results of the PCA
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the Internet at http://pubs.acs.org.
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